Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Rev Drug Discov ; 22(7): 585-603, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2320224

RESUMEN

During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.


Asunto(s)
COVID-19 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2 , Descubrimiento de Drogas , Pandemias
2.
Proc Natl Acad Sci U S A ; 120(11): e2214168120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2279148

RESUMEN

A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein-ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein-ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (MPro), obtaining parallel measurements of over 200 protein-ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry.


Asunto(s)
COVID-19 , Humanos , Ligandos , SARS-CoV-2 , Antivirales , Biología
3.
ChemMedChem ; 17(7): e202100641, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1705258

RESUMEN

The pentafluorosulfanyl (-SF5 ) functional group is of increasing interest as a bioisostere in medicinal chemistry. A library of SF5 -containing compounds, including amide, isoxazole, and oxindole derivatives, was synthesised using a range of solution-based and solventless methods, including microwave and ball-mill techniques. The library was tested against targets including human dihydroorotate dehydrogenase (HDHODH). A subsequent focused approach led to synthesis of analogues of the clinically used disease modifying anti-rheumatic drugs (DMARDs), Teriflunomide and Leflunomide, considered for potential COVID-19 use, where SF5 bioisostere deployment led to improved inhibition of HDHODH compared with the parent drugs. The results demonstrate the utility of the SF5 group in medicinal chemistry.


Asunto(s)
Química Farmacéutica , Dihidroorotato Deshidrogenasa , Amidas , Dihidroorotato Deshidrogenasa/antagonistas & inhibidores , Humanos
4.
Chem Commun (Camb) ; 57(48): 5909-5912, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1233726

RESUMEN

The SARS-CoV-2 main viral protease (Mpro) is an attractive target for antivirals given its distinctiveness from host proteases, essentiality in the viral life cycle and conservation across coronaviridae. We launched the COVID Moonshot initiative to rapidly develop patent-free antivirals with open science and open data. Here we report the use of machine learning for de novo design, coupled with synthesis route prediction, in our campaign. We discover novel chemical scaffolds active in biochemical and live virus assays, synthesized with model generated routes.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/enzimología , Antivirales/síntesis química , Coronavirus Humano OC43/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/síntesis química , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA